By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, the performance of particle filters relies on the knowledge of dynamic models and measurement models, and the construction of effective proposal distributions. An emerging trend in designing particle filters is the differentiable particle filters (DPFs). By constructing particle filters' components through neural networks and optimising them by gradient descent, differentiable particle filters are a promising computational tool to perform inference for sequence data in complex high-dimensional tasks such as vision-based robot localisation. In this paper, we provide a review of recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices of key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.
翻译:粒子过滤器(PFs)通过以加权样本近似于外表分布,为解决非线性连续测序问题提供了一个有效的机制。尽管粒子过滤器的有效性在各种应用中得到承认,但粒子过滤器的性能取决于动态模型和测量模型的知识,以及有效建议分布的构建。设计粒子过滤器的一个新趋势是不同的粒子过滤器(DPFs)。通过神经网络构建粒子过滤器的部件,并通过梯度下降加以优化,不同粒子过滤器是一种很有希望的计算工具,可以对基于视觉的机器人定位等复杂高维任务中的序列数据进行推断。在本文件中,我们审查了可不同粒子过滤器及其应用的最新进展。我们特别强调不同粒子过滤器关键组成部分的不同设计选择,包括动态模型、测量模型、建议分布、优化目标和不同复制技术。