By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, the performance of particle filters relies on the knowledge of dynamic models and measurement models, and the construction of effective proposal distributions. An emerging trend in designing particle filters is the differentiable particle filters (DPFs). By constructing particle filters' components through neural networks and optimising them by gradient descent, differentiable particle filters are a promising computational tool to perform inference for sequence data in complex high-dimensional tasks such as vision-based robot localisation. In this paper, we provide a review of recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices of key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.


翻译:粒子过滤器(PFs)通过以加权样本近似于外表分布,为解决非线性连续测序问题提供了一个有效的机制。尽管粒子过滤器的有效性在各种应用中得到承认,但粒子过滤器的性能取决于动态模型和测量模型的知识,以及有效建议分布的构建。设计粒子过滤器的一个新趋势是不同的粒子过滤器(DPFs)。通过神经网络构建粒子过滤器的部件,并通过梯度下降加以优化,不同粒子过滤器是一种很有希望的计算工具,可以对基于视觉的机器人定位等复杂高维任务中的序列数据进行推断。在本文件中,我们审查了可不同粒子过滤器及其应用的最新进展。我们特别强调不同粒子过滤器关键组成部分的不同设计选择,包括动态模型、测量模型、建议分布、优化目标和不同复制技术。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
13+阅读 · 2020年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员