We propose a novel Bayesian methodology to mitigate misspecification and improve estimating treatment effects. A plethora of methods to estimate -- particularly the heterogeneous -- treatment effect have been proposed with varying success. It is recognized, however, that the underlying data generating mechanism, or even the model specification, can drastically affect the performance of each method, without any way to compare its performance in real world applications. Using a foundational Bayesian framework, we develop Bayesian causal synthesis; a supra-inference method that synthesizes several causal estimates to improve inference. We provide a fast posterior computation algorithm and show that the proposed method provides consistent estimates of the heterogeneous treatment effect. Several simulations and an empirical study highlight the efficacy of the proposed approach compared to existing methodologies, providing improved point and density estimation of the heterogeneous treatment effect.
翻译:我们提出了一种新颖的贝叶斯方法,以减少误差和提高治疗效应的估计。已经提出了大量用于估计特别是异质治疗效果的方法,但是已认识到,底层的数据生成机制,甚至模型规范,可以极大地影响每种方法的性能,而没有任何方法可以比较其在实际应用中的性能。使用基础贝叶斯框架,我们开发了贝叶斯因果综合方法;这是一种超级推断方法,它综合了几个因果估计结果以改善推断。我们提供了一种快速的后验计算算法,并展示了所提出的方法提供了异质治疗效应的一致估计。几个模拟和一个实证研究突出了所提出方法的有效性,与现有方法相比提供了异质治疗效应的改进点和密度估计。