We introduce a new class of random Gottesman-Kitaev-Preskill (GKP) codes derived from the cryptanalysis of the so-called NTRU cryptosystem. The derived codes are good in that they exhibit constant rate and average distance scaling $\Delta \propto \sqrt{n}$ with high probability, where $n$ is the number of bosonic modes, which is a distance scaling equivalent to that of a GKP code obtained by concatenating single mode GKP codes into a qubit-quantum error correcting code with linear distance. The derived class of NTRU-GKP codes has the additional property that decoding for a stochastic displacement noise model is equivalent to decrypting the NTRU cryptosystem, such that every random instance of the code naturally comes with an efficient decoder. This construction highlights how the GKP code bridges aspects of classical error correction, quantum error correction as well as post-quantum cryptography. We underscore this connection by discussing the computational hardness of decoding GKP codes and propose, as a new application, a simple public key quantum communication protocol with security inherited from the NTRU cryptosystem.
翻译:我们引入了来自所谓的NTRU加密系统加密分析的新型随机高特斯曼- Kitaev- Preskill (GKP) 代码。 衍生的代码是好的, 因为它们显示恒定率和平均距离缩放 $\ Delta\ propto\ sqrt{n}$, 概率高, 概率高, 美元是波音模式的数量, 其距离缩放相当于通过将单一模式的 GKP 代码混入直线距离校正代码而获得的 GKP 代码的距离缩放。 衍生的 NTRU- GKP 代码类别具有额外的属性, 解码用于随机调离异的噪音模型, 相当于解密 NTRU 加密系统, 这样, 代码的每一个随机例子自然都会有一个有效的解码。 这个构造突出了 GKP 代码是如何将古典错误校正、 量错误校正和 QQuentum 加密等的方面连接起来的 。 我们强调这一关联, 讨论解码的计算硬性硬性, 从 GRU- GKP 密码到传号 系统 的密码和提议一个新应用程序。</s>