项目名称: 可降解性镁合金冠脉支架设计及生物力学性能研究

项目编号: No.51301049

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 李珍

作者单位: 哈尔滨工程大学

项目金额: 25万元

中文摘要: 镁合金具有良好的生物相容性、优于聚合物的力学性能及其生物可降解特性,是目前最具应用前景的支架金属材料。然而镁合金的易腐蚀性,导致其冠脉支架制品在应用过程中存在力学结构的改变,甚至发生断裂问题,而引起血管再狭窄和支架内血栓形成。一方面,对于医用镁合金研制提出了更高的性能要求;另一方面,系统研究镁合金冠脉支架结构优化设计,揭示镁合金支架在血管组织环境下的生物力学性能是尤其重要的。 本项目基于镁合金的可降解特性及人体血液流体力学环境,选用自主研发的兼具优异力学性能及生物相容性能的Mg-Sn-Mn系列合金进行冠脉支架设计研究;通过支架结构非线性有限元数值模拟、血液动力学模拟,及疲劳性能测试,建立镁合金支架动态力学性能损伤模型及支架-血管组织力学模型;通过体外动态降解实验及动物试验,揭示镁合金支架结构设计原理与血液动力学、动脉壁力学的相互作用机制;获得镁合金支架优化设计及生物力学评价方法。

中文关键词: 生物可降解;镁合金;冠脉支架;力学性能;有限元分析

英文摘要: Magnesium alloys with biocompatibility, and the mechanical properties superior to polymers and biodegradable characteristics, were currently the most promising stent metal materials. However, due to the corrosion behavior of the alloys, the mechanical structure of the magnesium coronary atents easily changed, even broken, which led to thrombosis in the stents and narrow vessels. On the other hand, the systematical reach on the optimum design of the atent tructures and the biomechanical properties under the vessel environment were very impotant. The project is based on the biodegradable characteristics of magnesium alloy and human blood fluid dynamics environment. Using the independent research and development Mg-Sn-Mn alloy, which have both excellent mechanical properties and biocompatibility, design coronary stents. Establish the damage mechanical model and stent-vascular tissue mechanical model of the magnesium alloy stents by doing non-line finite element simulation hemodynamic simulation and fatigue performance testing of the stents structure. The interaction mechanisms between the design principle of the stent structure and hemodynamics, arterial wall mechanics were obtained via the in vitro dynamic degradation experiments and animal experiments. The method of optimum design and biomechanical evaluation we

英文关键词: Biodegradable;Magnesium;Coronary Stents;Mechanics;Finite Element Analysis

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
182+阅读 · 2020年11月23日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
专知会员服务
114+阅读 · 2020年8月22日
深度生成模型综述
专知
1+阅读 · 2022年1月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
24+阅读 · 2021年6月25日
小贴士
相关VIP内容
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
182+阅读 · 2020年11月23日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
专知会员服务
114+阅读 · 2020年8月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员