We introduce factorize sum split product networks (FSPNs), a new class of probabilistic graphical models (PGMs). FSPNs are designed to overcome the drawbacks of existing PGMs in terms of estimation accuracy and inference efficiency. Specifically, Bayesian networks (BNs) have low inference speed and performance of tree structured sum product networks(SPNs) significantly degrades in presence of highly correlated variables. FSPNs absorb their advantages by adaptively modeling the joint distribution of variables according to their dependence degree, so that one can simultaneously attain the two desirable goals: high estimation accuracy and fast inference speed. We present efficient probability inference and structure learning algorithms for FSPNs, along with a theoretical analysis and extensive evaluation evidence. Our experimental results on synthetic and benchmark datasets indicate the superiority of FSPN over other PGMs.
翻译:我们引入了分解产品网络(SFPNs)的因子化和分解产品网络(FSPNs),这是一个新的概率图形模型(PGMs)类别。FSPNs旨在克服现有PGM在估计准确性和推论效率方面的缺点。具体地说,Bayesian网络(Bens)在树结构总产品网络(SPNs)的推论速度和性能低,在存在高度相关变量的情况下,树结构化总产品网络(SPNs)显著退化。FSPN通过根据依赖程度对变量的联合分布进行适应性建模来吸收其优势,从而可以同时实现两个理想目标:高估精度和快速推论速度。我们展示了FSPNs的有效概率推断和结构学习算法,同时提供了理论分析和广泛的评价证据。我们在合成和基准数据集方面的实验结果表明FSPN优先于其他PGMs。