Volatility asymmetry is a hot topic in high-frequency financial market. In this paper, we propose a new econometric model, which could describe volatility asymmetry based on high-frequency historical data and low-frequency historical data. After providing the quasi-maximum likelihood estimators for the parameters, we establish their asymptotic properties. We also conduct a series of simulation studies to check the finite sample performance and volatility forecasting performance of the proposed methodologies. And an empirical application is demonstrated that the new model has stronger volatility prediction power than GARCH-It\^{o} model in the literature.
翻译:挥发性不对称是高频金融市场的一个热题。 在本文中,我们提出了一个新的计量经济学模型,根据高频历史数据和低频历史数据描述波动性不对称。在提供了参数的准最大概率估计器之后,我们建立了参数的无药性特性。我们还进行了一系列模拟研究,以检查拟议方法的有限样本性能和波动性预测性能。经验应用证明,新模型比文献中的GACH-It ⁇ o}模型具有更大的波动性预测力。