We consider the problem of minimizing regret in an $N$ agent heterogeneous stochastic linear bandits framework, where the agents (users) are similar but not all identical. We model user heterogeneity using two popularly used ideas in practice; (i) A clustering framework where users are partitioned into groups with users in the same group being identical to each other, but different across groups, and (ii) a personalization framework where no two users are necessarily identical, but a user's parameters are close to that of the population average. In the clustered users' setup, we propose a novel algorithm, based on successive refinement of cluster identities and regret minimization. We show that, for any agent, the regret scales as $\mathcal{O}(\sqrt{T/N})$, if the agent is in a `well separated' cluster, or scales as $\mathcal{O}(T^{\frac{1}{2} + \varepsilon}/(N)^{\frac{1}{2} -\varepsilon})$ if its cluster is not well separated, where $\varepsilon$ is positive and arbitrarily close to $0$. Our algorithm is adaptive to the cluster separation, and is parameter free -- it does not need to know the number of clusters, separation and cluster size, yet the regret guarantee adapts to the inherent complexity. In the personalization framework, we introduce a natural algorithm where, the personal bandit instances are initialized with the estimates of the global average model. We show that, an agent $i$ whose parameter deviates from the population average by $\epsilon_i$, attains a regret scaling of $\widetilde{O}(\epsilon_i\sqrt{T})$. This demonstrates that if the user representations are close (small $\epsilon_i)$, the resulting regret is low, and vice-versa. The results are empirically validated and we observe superior performance of our adaptive algorithms over non-adaptive baselines.
翻译:我们考虑在以美元为单位的代理商混杂的线性土匪框架中最大限度地减少遗憾的问题, 代理商( 用户) 是相似的, 但并不完全相同。 我们用两种常用的理念来模拟用户的变异性。 (一) 群集框架, 用户被分解成组, 同一组的用户是相同的, 但各组不同, 以及 (二) 个化框架, 其中没有两个用户必然相同, 但用户参数接近人口平均值。 在群集用户设置中, 我们提议了一个基于群集特性连续精细化和最小化的新的算法。 我们显示, 对于任何一个代理商来说, 以美元( sqrt{T/N} 为单位, 将用户分解成组群组, 而不是以美元为单位, 以美元为单位的递解算值表示 。