We consider an optimal control problem governed by an elliptic variational inequality of the second kind. The problem is discretized by linear finite elements for the state and a variational discrete approach for the control. Based on a quadratic growth condition we derive nearly optimal a priori error estimates. Moreover, we establish second order sufficient optimality conditions that ensure a quadratic growth condition. These conditions are rather restrictive, but allow us to construct a one-dimensional locally optimal solution with reduced regularity, which serves as an exact solution for numerical experiments.
翻译:我们认为这是一个由第二种异端变异性不平等所决定的最佳控制问题。 这个问题由国家线性限值元素和异端控制方法分解。 基于四级增长条件,我们得出了近乎最佳的先验误差估计。 此外,我们建立了第二级的足够最佳条件,以确保二次增长条件。 这些条件相当限制性,但允许我们构建一个单维的局部最佳解决方案,减少规律性,这是数字实验的精确解决方案。