We revisit the randomized incremental construction of the Trapezoidal Search DAG (TSD) for a set of $n$ non-crossing segments, e.g. edges from planar subdivisions. It is well known that this point location structure has ${\cal O}(n)$ expected size and ${\cal O}(n \ln n)$ expected construction time. Our main result is an improved tail bound, with exponential decay, for the size of the TSD: There is a constant such that the probability for a TSD to exceed its expected size by more than this factor is at most $1/e^n$. This yields improved bounds on the TSD construction and their maintenance. I.e. TSD construction takes with high probability ${\cal O}(n \ln n)$ time and TSD size can be made worst case ${\cal O}(n)$ with an expected rebuild cost of ${\cal O}(1)$. The proposed analysis technique also shows that the expected depth is ${\cal O}(\ln n)$, which partially solves a recent conjecture by Hemmer et al. that is used in the CGAL implementation of the TSD.
翻译:我们重新审视了用于一组非跨段(如平面分区的边缘)的轨迹搜索DAG(TSD)的随机递增结构,例如,平面小区块的边缘。众所周知,这一点位置结构的预期大小为$cal O}(n)美元,预期建造时间为$cal O}(n = ln)美元。我们的主要结果是,为TSD的大小而改进尾盘绑,并带来指数衰减:有一个常态,因此,TSD超出其预期规模超过这一系数的可能性最多为1美元/en美元。这可以改善TSD的建造及其维护的界限。I.SD的建造以高概率$cal O}(n = ln) 时间和 TSD的大小可能变成最坏的 $cal O}(n) 美元,预计重建成本为$cal O}(1)美元。 拟议的分析技术还表明,预期深度为$_cal O}(n)美元,这将部分解决了HEMAR 和AL 执行的CSD的近期预测。