Individualized treatment rules (ITRs) are considered a promising recipe to deliver better policy interventions. One key ingredient in optimal ITR estimation problems is to estimate the average treatment effect conditional on a subject's covariate information, which is often challenging in observational studies due to the universal concern of unmeasured confounding. Instrumental variables (IVs) are widely-used tools to infer the treatment effect when there is unmeasured confounding between the treatment and outcome. In this work, we propose a general framework of approaching the optimal ITR estimation problem when a valid IV is allowed to only partially identify the treatment effect. We introduce a novel notion of optimality called "IV-optimality". A treatment rule is said to be IV-optimal if it minimizes the maximum risk with respect to the putative IV and the set of IV identification assumptions. We derive a bound on the risk of an IV-optimal rule that illuminates when an IV-optimal rule has favorable generalization performance. We propose a classification-based statistical learning method that estimates such an IV-optimal rule, design computationally-efficient algorithms, and prove theoretical guarantees. We contrast our proposed method to the popular outcome weighted learning (OWL) approach via extensive simulations, and apply our method to study which mothers would benefit from traveling to deliver their premature babies at hospitals with high level neonatal intensive care units.
翻译:个人化治疗规则(ITRs)被认为是提供更好的政策干预的有希望的方法。最佳ITR估计问题的一个关键要素是估计以一个对象的共变信息为条件的平均治疗效果。由于普遍关注未计量的混乱,观察研究往往对此具有挑战性。工具变量(IVs)被广泛用来在治疗和结果之间出现不测的混杂时推断治疗效果。在这项工作中,我们提出了一个处理最佳ITR估计问题的一般框架,如果允许有效的四类仅部分确定治疗效果。我们引入了一种新颖的优化概念,称为“IV-最佳性”。如果将假设四类和四类确定假设的最大风险降到最低,那么治疗规则通常就具有挑战性。我们把一种IV-最佳规则作为指导,在四类最优规则具有可喜的概括性效果时,我们提出一种基于分类的统计学习方法。我们提出了一种基于分类的统计学习方法,对四类最优性规则进行估算,设计为“IV-最佳性”的治疗规则,设计一种最优化的治疗规则,如果治疗规则尽可能减少与图案相关的最大风险,那么治疗规则就是四类最佳的治疗规则,那么,如果治疗规则的治疗规则就是四最佳的治疗规则,那么,那么,那么治疗规则就是最优的治疗规则就是最优,如果治疗规则就是最优的四最佳的治疗规则,那么优的治疗规则就是最优的治疗规则。 我们的治疗规则,那么,那么,那么,那么,据说的治疗规则就是最优的治疗规则。我们想的治疗规则。我们使用的治疗规则。我们提出的一种治疗方法。我们提出的方法,在通过高的计算方法,我们用的方法,在通过高的计算方法,从高级制式方法,然后用的方法,从高级制式方法,从高级制制式方法,然后用的方法是理论学制式方法,用的方法,我们用到通过高的试验制方法,用的方法,然后用。