In CRYPTO 2018, Russell et al introduced the notion of crooked indifferentiability to analyze the security of a hash function when the underlying primitive is subverted. They showed that the $n$-bit to $n$-bit function implemented using enveloped XOR construction (\textsf{EXor}) with $3n+1$ many $n$-bit functions and $3n^2$-bit random initial vectors (iv) can be proven secure asymptotically in the crooked indifferentiability setting. -We identify several major issues and gaps in the proof by Russel et al, We show that their proof can achieve security only when the adversary is restricted to make queries related to a single message. - We formalize new technique to prove crooked indifferentiability without such restrictions. Our technique can handle function dependent subversion. We apply our technique to provide a revised proof for the \textsf{EXor} construction. - We analyze crooked indifferentiability of the classical sponge construction. We show, using a simple proof idea, the sponge construction is a crooked-indifferentiable hash function using only $n$-bit random iv. This is a quadratic improvement over the {\sf EXor} construction and solves the main open problem of Russel et al.
翻译:在CRYPTO 2018年, Russell 等人在CRYPTO 2018年中提出了在原始原始基础被颠覆时分析散列功能安全性时偏差的不区分概念。 他们表明,在使用3n+1美元(textsf{Exor})的封套XOR建筑(\ textsf{Exor})中,3n+1美元(美元)的3n+1美元(美元)函数和3n%2美元(美元)的随机初始矢量(iv)可以证明,在扭曲的不区别环境中,我们发现一些主要问题和鲁塞尔等人的证据差距。 我们表明,只有在对手被限制对单一信息进行查询时,他们的证据才能实现安全性。 我们正式确定新的技术,在没有这种限制的情况下证明无区别性。 我们的技术可以处理取决于颠覆性功能。 我们运用我们的技术,为正统海绵结构的扭曲性开放性分析。 我们使用简单的证据来显示,海绵结构是一个扭曲性、不可分辨的问题。