In CRYPTO 2018, Russell et al introduced the notion of crooked indifferentiability to analyze the security of a hash function when the underlying primitive is subverted. They showed that the $n$-bit to $n$-bit function implemented using enveloped XOR construction (\textsf{EXor}) with $3n+1$ many $n$-bit functions and $3n^2$-bit random initial vectors (iv) can be proven secure asymptotically in the crooked indifferentiability setting. -We identify several major issues and gaps in the proof by Russel et al, We show that their proof can achieve security only when the adversary is restricted to make queries related to a single message. - We formalize new technique to prove crooked indifferentiability without such restrictions. Our technique can handle function dependent subversion. We apply our technique to provide a revised proof for the \textsf{EXor} construction. - We analyze crooked indifferentiability of the classical sponge construction. We show, using a simple proof idea, the sponge construction is a crooked-indifferentiable hash function using only $n$-bit random iv. This is a quadratic improvement over the {\sf EXor} construction and solves the main open problem of Russel et al.


翻译:在CRYPTO 2018年, Russell 等人在CRYPTO 2018年中提出了在原始原始基础被颠覆时分析散列功能安全性时偏差的不区分概念。 他们表明,在使用3n+1美元(textsf{Exor})的封套XOR建筑(\ textsf{Exor})中,3n+1美元(美元)的3n+1美元(美元)函数和3n%2美元(美元)的随机初始矢量(iv)可以证明,在扭曲的不区别环境中,我们发现一些主要问题和鲁塞尔等人的证据差距。 我们表明,只有在对手被限制对单一信息进行查询时,他们的证据才能实现安全性。 我们正式确定新的技术,在没有这种限制的情况下证明无区别性。 我们的技术可以处理取决于颠覆性功能。 我们运用我们的技术,为正统海绵结构的扭曲性开放性分析。 我们使用简单的证据来显示,海绵结构是一个扭曲性、不可分辨的问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月7日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员