Topology optimization problems generally support multiple local minima, and real-world applications are typically three-dimensional. In previous work [I. P. A. Papadopoulos, P. E. Farrell, and T. M. Surowiec, Computing multiple solutions of topology optimization problems, SIAM Journal on Scientific Computing, (2021)], the authors developed the deflated barrier method, an algorithm that can systematically compute multiple solutions of topology optimization problems. In this work we develop preconditioners for the linear systems arising in the application of this method to Stokes flow, making it practical for use in three dimensions. In particular, we develop a nested block preconditioning approach which reduces the linear systems to solving two symmetric positive-definite matrices and an augmented momentum block. An augmented Lagrangian term is used to control the innermost Schur complement and we apply a geometric multigrid method with a kernel-capturing relaxation method for the augmented momentum block. We present multiple solutions in three-dimensional examples computed using the proposed iterative solver.
翻译:地形优化问题一般支持多重本地微型,而现实世界应用一般是三维的。在以前的工作中[I. P. A. Papadopoulos, P. E. Farrell和T. M. Surowiec, 地形优化问题的计算机多重解决方案,SIAM Journal on Science Economic (2021)],作者开发了减缩屏障法,这是一种算法,可以系统地计算地形优化问题的多种解决方案。在这项工作中,我们为在斯托克斯流应用这一方法时产生的线性系统开发了先决条件,使之在三个维度上实际应用。特别是,我们开发了一个嵌套的区际预设法,将线性系统缩小到解决两个对称正断基矩阵和一个增强的动力块。一个扩大的Lagrangian术语用于控制内部Schur补充物,我们用一种以内核为加速动力块的放松法的几何多电网格法。我们用三个维的示例提出了多种解决方案。