Our modern history of deep learning follows the arc of famous emergent disciplines in engineering (e.g. aero- and fluid dynamics) when theory lagged behind successful practical applications. Viewing neural networks from a dynamical systems perspective, in this work, we propose a novel characterization of deep neural networks as pointwise affine maps, making them accessible to a broader range of analysis methods to help close the gap between theory and practice. We begin by showing the equivalence of neural networks with parameter-varying affine maps parameterized by the state (feature) vector. As the paper's main results, we provide necessary and sufficient conditions for the global stability of generic deep feedforward neural networks. Further, we identify links between the spectral properties of layer-wise weight parametrizations, different activation functions, and their effect on the overall network's eigenvalue spectra. We analyze a range of neural networks with varying weight initializations, activation functions, bias terms, and depths. Our view of neural networks as affine parameter varying maps allows us to "crack open the black box" of global neural network dynamical behavior through visualization of stationary points, regions of attraction, state-space partitioning, eigenvalue spectra, and stability properties. Our analysis covers neural networks both as an end-to-end function and component-wise without simplifying assumptions or approximations. The methods we develop here provide tools to establish relationships between global neural dynamical properties and their constituent components which can aid in the principled design of neural networks for dynamics modeling and optimal control.
翻译:当理论落后于成功的实用应用时,我们现代深层学习的历史遵循了工程领域著名的新兴学科(如空气和流动动态)的弧形。从动态系统的角度看待神经网络,在这项工作中,我们建议从动态系统的角度来看待神经网络,将深神经网络的新特征描述为指针形的松动地图,使这些网络能够被更广泛的分析方法所利用,以帮助缩小理论和实践之间的差距。我们首先通过显示神经网络的等同性,根据状态(相对性)矢量的参数翻转近图(如空气和流动动态动态动态动态动态)。作为文件的主要结果,我们提供了必要和充分的条件,以便全球总体动态神经网络的稳定性,不同的激活功能及其对整个网络的神经价值的影响。我们分析一系列具有不同重量初始化作用的神经网络,激活功能,偏差的功能,以及深度。我们对神经网络的观察,作为不同地图的相近度参数,让我们“打开全球内脏网络的内脏结构结构结构的黑框, 以及我们视觉网络的内脏结构分析, 成为我们动态网络的视觉结构的稳定性分析。