The classical Andr\'{a}sfai--Erd\H{o}s--S\'{o}s Theorem states that for $\ell\ge 2$, every $n$-vertex $K_{\ell+1}$-free graph with minimum degree greater than $\frac{3\ell-4}{3\ell-1}n$ must be $\ell$-partite. We establish a simple criterion for $r$-graphs, $r \geq 2$, to exhibit an Andr\'{a}sfai--Erd\H{o}s--S\'{o}s type property, also known as degree-stability. This leads to a classification of most previously studied hypergraph families with this property. An immediate application of this result, combined with a general theorem by Keevash--Lenz--Mubayi, solves the spectral Tur\'{a}n problems for a large class of hypergraphs. For every $r$-graph $F$ with degree-stability, there is a simple algorithm to decide the $F$-freeness of an $n$-vertex $r$-graph with minimum degree greater than $(\pi(F) - \varepsilon_F)\binom{n}{r-1}$ in time $O(n^r)$, where $\varepsilon_F >0$ is a constant. In particular, for the complete graph $K_{\ell+1}$, we can take $\varepsilon_{K_{\ell+1}} = (3\ell^2-\ell)^{-1}$, and this bound is tight up to some multiplicative constant factor unless $\mathbf{W[1]} = \mathbf{FPT}$. Based on a result by Chen--Huang--Kanj--Xia, we further show that for every fixed $C > 0$, this problem cannot be solved in time $n^{o(\ell)}$ if we replace $\varepsilon_{K_{\ell+1}}$ with $(C\ell)^{-1}$ unless $\mathbf{ETH}$ fails. Furthermore, we apply the degree-stability of $K_{\ell+1}$ to decide the $K_{\ell+1}$-freeness of graphs whose size is close to the Tur\'{a}n bound in time $(\ell+1)n^2$, partially improving a recent result by Fomin--Golovach--Sagunov--Simonov. As an intermediate step, we show that for a specific class of $r$-graphs $F$, the (surjective) $F$-coloring problem can be solved in time $O(n^r)$, provided the input $r$-graph has $n$ vertices and a large minimum degree, refining several previous results.
翻译:暂无翻译