We consider the problem of finding the optimal value of n in the n-step temporal difference (TD) algorithm. We find the optimal n by resorting to the model-free optimization technique of simultaneous perturbation stochastic approximation (SPSA). We adopt a one-simulation SPSA procedure that is originally for continuous optimization to the discrete optimization framework but incorporates a cyclic perturbation sequence. We prove the convergence of our proposed algorithm, SDPSA, and show that it finds the optimal value of n in n-step TD. Through experiments, we show that the optimal value of n is achieved with SDPSA for any arbitrary initial value of the same.


翻译:本文考虑在n步时序差分算法中寻找最优的n值。我们采用了模型无关的优化技术——同时摇摆随机逼近法(SPSA)——找到最优的n。我们将原本针对连续优化的一次仿真SPSA过程引入到离散优化框架中,同时加入循环摇摆序列。我们证明了我们提出的SDPSA算法的收敛性并展示它可以找到任意初始值下的n步TD的最优参数。通过实验,我们展示了SDPSA算法确实可以实现最优的n值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员