The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for the EHT is how well key parameters, such as trapped magnetic flux and the associated disk models, can be extracted from present and future EHT VLBI data products. The process of modeling visibilities and analyzing them is complicated by the fact that the data are sparsely sampled in the Fourier domain while most of the theory/simulation is constructed in the image domain. Here we propose a data-driven approach to analyze complex visibilities and closure quantities for radio interferometric data with neural networks. Using mock interferometric data, we show that our neural networks are able to infer the accretion state as either high magnetic flux (MAD) or low magnetic flux (SANE), suggesting that it is possible to perform parameter extraction directly in the visibility domain without image reconstruction. We have applied VLBInet to real M87 EHT data taken on four different days in 2017 (April 5, 6, 10, 11), and our neural networks give a score prediction 0.52, 0.4, 0.43, 0.76 for each day, with an average score 0.53, which shows no significant indication for the data to lean toward either the MAD or SANE state.
翻译:事件地平线望远镜(EHT)最近发布了M87黑洞第一个地平尺度图像。 这些图像与其他天文数据结合,制约了洞的质量与旋转以及洞中的伸缩率和磁通量。 EHT的一个重要问题是,从目前和未来的EHT VLBI数据产品中可以提取关键参数,如隐蔽的磁通量和相关磁盘模型。建模和分析坚固度的过程由于以下事实而变得复杂:数据在Fourier域中很少采样,而大多数理论/模拟则在图像域中构建。我们在这里提出了一种数据驱动法,用于分析复杂的粘度和孔的旋转率以及被困在洞洞中的磁通量和磁通量。对于EHT来说,一个重要问题是如何从目前和将来的EHT数据产品中提取的。我们的神经网络可以推断出一个精度,要么是高磁通度(MAD),要么是低磁通度(SANE),要么是低磁通度(SANE),建议有可能在可见域内直接提取参数,而无需重建图像域域。 我们用VLBInet对NA 5 和0.4 MAD 数据进行了一次的排名, 0.7 显示实际数据, 0.4 207 。