Ultra-low dose CT (uLDCT) significantly reduces radiation exposure but introduces severe noise and artifacts. It also leads to substantial spatial misalignment between uLDCT and normal dose CT (NDCT) image pairs. This poses challenges for directly applying existing denoising networks trained on synthetic noise or aligned data. To address this core challenge in uLDCT denoising, this paper proposes an innovative denoising framework based on an Image Purification (IP) strategy. First, we construct a real clinical uLDCT lung dataset. Then, we propose an Image Purification strategy that generates structurally aligned uLDCT-NDCT image pairs, providing a high-quality data foundation for network training. Building upon this, we propose a Frequency-domain Flow Matching (FFM) model, which works synergistically with the IP strategy to excellently preserve the anatomical structure integrity of denoised images. Experiments on the real clinical dataset demonstrate that our IP strategy significantly enhances the performance of multiple mainstream denoising models on the uLDCT task. Notably, our proposed FFM model combined with the IP strategy achieves state-of-the-art (SOTA) results in anatomical structure preservation. This study provides an effective solution to the data mismatch problem in real-world uLDCT denoising. Code and dataset are available at https://github.com/MonkeyDadLufy/flow-matching.
翻译:暂无翻译