Few-shot dialogue state tracking (DST) model tracks user requests in dialogue with reliable accuracy even with a small amount of data. In this paper, we introduce an ontology-free few-shot DST with self-feeding belief state input. The self-feeding belief state input increases the accuracy in multi-turn dialogue by summarizing previous dialogue. Also, we newly developed a slot-gate auxiliary task. This new auxiliary task helps classify whether a slot is mentioned in the dialogue. Our model achieved the best score in a few-shot setting for four domains on multiWOZ 2.0.
翻译:几发对话状态跟踪模式( DST) 跟踪用户在对话中以可靠准确度跟踪用户请求,即使有少量数据。 在本文中,我们引入了无本体学的少数点DST, 并附有自喂信仰状态投入。 自喂信仰状态投入通过总结前一次对话提高了多方向对话的准确性。 此外, 我们新开发了一个插座辅助任务 。 这一新辅助任务有助于区分对话中是否提及一个空位 。 我们的模型在多 WOZ 2. 0 上四个域的几分组合中取得了最佳得分 。