The key-scheduling algorithm in the AES is the component responsible for selecting from the master key the sequence of round keys to be xor-ed to the partially encrypted state at each iteration. We consider here the group $\Gamma$ generated by the action of the AES-128 key-scheduling operation, and we prove that the smallest group containing $\Gamma$ and all the translations of the message space is primitive. As a consequence, we obtain that no proper and non-trivial subspace can be invariant under its action.
翻译:AES 中的关键排程算法是负责在每次迭代中从主键中选择要 xor- 编辑到部分加密状态的圆键序列的组件。 我们在这里考虑 AES-128 键排程操作的动作产生的组 $\ Gamma$, 我们证明最小组包含$\ Gamma$ 和所有电文空间翻译的最小组是原始的。 因此, 我们发现没有合适的和非三角子空间可以在其动作下不动 。