Unlike the case when using a balanced training dataset, the per-class recall (i.e., accuracy) of neural networks trained with an imbalanced dataset are known to vary a lot from category to category. The convention in long-tailed recognition is to manually split all categories into three subsets and report the average accuracy within each subset. We argue that under such an evaluation setting, some categories are inevitably sacrificed. On one hand, focusing on the average accuracy on a balanced test set incurs little penalty even if some worst performing categories have zero accuracy. On the other hand, classes in the "Few" subset do not necessarily perform worse than those in the "Many" or "Medium" subsets. We therefore advocate to focus more on improving the lowest recall among all categories and the harmonic mean of all recall values. Specifically, we propose a simple plug-in method that is applicable to a wide range of methods. By simply re-training the classifier of an existing pre-trained model with our proposed loss function and using an optional ensemble trick that combines the predictions of the two classifiers, we achieve a more uniform distribution of recall values across categories, which leads to a higher harmonic mean accuracy while the (arithmetic) average accuracy is still high. The effectiveness of our method is justified on widely used benchmark datasets.


翻译:在使用平衡的培训数据集时,与使用平衡的培训数据集的情况不同,受过不平衡数据集训练的神经网络的单级回调(即精度)在类别和类别之间差别很大。长期确认的公约是手工将所有类别分成三个子集,并报告每个子集的平均精度。我们争辩说,在这种评价设置下,某些类别不可避免地会牺牲。一方面,即使某些表现最差的类别没有准确性,但侧重于平衡测试数据集的平均精度却很少受到处罚。另一方面,“Few”子类不一定比“Many”或“Medium”子集的更差。因此,我们主张更加注重改进所有类别中最低的回调,以及所有回调值的相近度。具体地说,我们建议一种简单的插插入法,适用于广泛的方法。简单地将现有的预先培训模式的精度与我们拟议的损失函数重新训练,并且使用一种可选的混合两种分类预测的组合戏法。我们所使用的平均精确性数据在高的类别上达到一个比较一致的精确度的精确度。</s>

1
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Incremental Generalized Category Discovery
Arxiv
0+阅读 · 2023年4月27日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员