A central problem in Binary Hypothesis Testing (BHT) is to determine the optimal tradeoff between the Type I error (referred to as false alarm) and Type II (referred to as miss) error. In this context, the exponential rate of convergence of the optimal miss error probability -- as the sample size tends to infinity -- given some (positive) restrictions on the false alarm probabilities is a fundamental question to address in theory. Considering the more realistic context of a BHT with a finite number of observations, this paper presents a new non-asymptotic result for the scenario with monotonic (sub-exponential decreasing) restriction on the Type I error probability, which extends the result presented by Strassen in 2009. Building on the use of concentration inequalities, we offer new upper and lower bounds to the optimal Type II error probability for the case of finite observations. Finally, the derived bounds are evaluated and interpreted numerically (as a function of the number samples) for some vanishing Type I error restrictions.


翻译:二进制假冒测试(BHT)的一个核心问题是确定类型I错误(称为假警报)和类型II(称为误差)错误(称为误差)之间的最佳权衡。在这方面,最佳误差概率的指数趋同率 -- -- 因为样本大小往往具有无限性 -- -- 鉴于对假警报概率的一些(积极)限制,这是一个理论上需要解决的根本问题。考虑到带有有限观察次数的BHT比较现实的背景,本文件为对类型I的单一(次爆炸减少)限制的假设提出了新的非不痛苦结果,这种限制延长了 Strassen 2009年的结果。在使用浓度不平等的基础上,我们为有限观察的案例中,对最佳类型II误差概率提供了新的上限和下限。最后,对衍生的界限进行了定量评估和解释(作为数字样本的函数),用于某些消失类型I的错误限制。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
开放知识图谱
4+阅读 · 2017年12月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
开放知识图谱
4+阅读 · 2017年12月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员