The logical and practical difficulties associated with research interpretation using P values and null hypothesis significance testing have been extensively documented. This paper describes an alternative, likelihood-based approach to P-value interpretation. The P-value and sample size of a research study are used to derive a likelihood function with a single parameter, the estimated population effect size, and the method of maximum likelihood estimation is used to calculate the most likely effect size. Comparison of the likelihood of the most likely effect size and the likelihood of the minimum clinically significant effect size using the likelihood ratio test yields the clinical significance support level (or S-value), a logical and easily understood metric of research evidence. This clinical significance likelihood approach has distinct advantages over null hypothesis significance testing. As motivating examples we demonstrate the calculation and interpretation of S-values applied to two recent widely publicised trials, WOMAN from the Lancet and RELIEF from the New England Journal of Medicine.
翻译:使用P值和无效假设意义测试进行研究解释的逻辑和实际困难已广泛记录在案,本文描述了一种以可能性为基础的P值解释的替代方法; 一项研究的P值和样本规模用于得出单一参数的可能功能、估计人口影响大小和最大可能性估算方法,用以计算最可能的影响大小; 最可能的影响大小的可能性和利用可能性比值测试进行最低临床影响大小的可能性比较,得出临床重要性支持水平(或S值),这是一种合乎逻辑和易于理解的研究证据的衡量标准; 这种临床重要性可能性方法与无效假设意义测试相比,具有明显的优势; 作为激励性实例,我们展示了最近两次广泛公布的试验,即《英国医学杂志》的Lancet和RELIEF对S值的计算和解释。