In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular, we focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche's method. The stability requirement for Nitsche's method necessitates either a cut-size dependent penalty parameter, or an additional ghost-penalty stabilization term is necessary. Our findings show that both techniques suffer from cut-size dependent critical time-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that this form of `mass-scaling' does not adversely affect error and convergence characteristics for a transient membrane example, and has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of a Kirchhoff-Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude compared to a penalty formulation at equal time-step size.
翻译:在文章中,我们研究了小切元素对临界时间步骤大小的影响,在暗色测深环境中,我们研究了小切元素对关键时间步骤大小的影响;我们分析了第二阶(membrane)和第四阶(shell-type)等的不同配方,分析了第二阶(membrane)和第四阶(shell-type)等方程式的不同配方,在关键时间步骤大小和各种削减的切分大小之间形成了比例关系;特别是,我们侧重于对弱施加Dirichlet条件的不同方法:通过执行刑罚和尼采方法;尼采方法的稳定要求要么需要缩小依附刑罚参数,要么需要增加一个幽灵-惩罚稳定期。我们的调查结果显示,这两种技术都存在临界依赖性关键时间步骤大小,但在质量矩阵中增加一个幽灵-惩罚期来缓解这一问题。我们确认,这种“量定型”形式不会对短暂的Membrane示例中的错误和趋同特征产生不利影响,而且有可能以数量级增加临界时间步骤。最后,为了稳定地模拟我们的贝壳级定型定型模型,将稳定地降为等级。