The generation of synthetic images is currently being dominated by Generative Adversarial Networks (GANs). Despite their outstanding success in generating realistic looking images, they still suffer from major drawbacks, including an unstable and highly sensitive training procedure, mode-collapse and mode-mixture, and dependency on large training sets. In this work we present a novel non-adversarial generative method - Clustered Optimization of LAtent space (COLA), which overcomes some of the limitations of GANs, and outperforms GANs when training data is scarce. In the full data regime, our method is capable of generating diverse multi-class images with no supervision, surpassing previous non-adversarial methods in terms of image quality and diversity. In the small-data regime, where only a small sample of labeled images is available for training with no access to additional unlabeled data, our results surpass state-of-the-art GAN models trained on the same amount of data. Finally, when utilizing our model to augment small datasets, we surpass the state-of-the-art performance in small-sample classification tasks on challenging datasets, including CIFAR-10, CIFAR-100, STL-10 and Tiny-ImageNet. A theoretical analysis supporting the essence of the method is presented.
翻译:合成图像的生成目前由Generation Adversarial Networks(GANs)主导。合成图像的生成目前由Generation Adversarial Network(GANs)主导。尽管在制作现实的图像方面取得了杰出的成功,但是它们仍然面临着重大的缺陷,包括培训程序不稳定和高度敏感、模式折叠和模式混合以及依赖大型培训机组。在这项工作中,我们提出了一个新的非对抗性基因化方法――Latent空间的集束优化(COLA),该方法克服了GANs的一些局限性,在培训数据缺乏时优于GANs。在完整的数据制度中,我们的方法能够产生各种多级图像,而没有监督,在图像质量和多样性方面超过了以往的非对抗性方法。在小型数据系统中,只有少量的贴标签图像样本可供培训使用,而无法获取额外的无标签数据,我们的结果超过了在同样数量的数据方面经过培训的最先进的GAN模型。最后,在利用我们的模型来增加小数据集时,我们超过了S-100支持小型数据库的状态业绩,超过了SIR-10号的S-10号模型分析是具有挑战性的CIFAR-10号的I-10号的I-I-I-10号的I-I-I-I-ITRA级的理论级数据分析。