Sequential recommendation models, models that learn from chronological user-item interactions, outperform traditional recommendation models in many settings. Despite the success of sequential recommendation models, their robustness has recently come into question. Two properties unique to the nature of sequential recommendation models may impair their robustness - the cascade effects induced during training and the model's tendency to rely too heavily on temporal information. To address these vulnerabilities, we propose Cascade-guided Adversarial training, a new adversarial training procedure that is specifically designed for sequential recommendation models. Our approach harnesses the intrinsic cascade effects present in sequential modeling to produce strategic adversarial perturbations to item embeddings during training. Experiments on training state-of-the-art sequential models on four public datasets from different domains show that our training approach produces superior model ranking accuracy and superior model robustness to real item replacement perturbations when compared to both standard model training and generic adversarial training.


翻译:序列推荐模型在很多领域中表现出了优越性,但其鲁棒性近来受到质疑。序列模型中存在两个唯一的属性可能会削弱其鲁棒性——训练时引起的叠加效应和模型过度依赖时间信息的倾向。为了解决这些脆弱性,我们提出了一种新的针对序列推荐模型的敌对训练过程——基于叠加引导敌对训练。该方法利用序列建模中固有的级联效应,在训练过程中产生策略性的敌对扰动以改变项目嵌入。在四个不同领域的公共数据集上,对最先进的序列模型进行实验表明,与标准模型训练和通用敌对训练相比,我们的训练方法不仅公正性更强,而且对真实项目替换扰动具有更强的鲁棒性。

0
下载
关闭预览

相关内容

 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
46+阅读 · 2023年4月16日
【ICML2022】基于少样本策略泛化的决策Transformer
专知会员服务
36+阅读 · 2022年7月11日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
87+阅读 · 2020年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员