In this paper, we present an algorithm for creating a synthetic population for the Greater Melbourne area using a combination of machine learning, probabilistic, and gravity-based approaches. We combine these techniques in a hybrid model with three primary innovations: 1. when assigning activity patterns, we generate individual activity chains for every agent, tailored to their cohort; 2. when selecting destinations, we aim to strike a balance between the distance-decay of trip lengths and the activity-based attraction of destination locations; and 3. we take into account the number of trips remaining for an agent so as to ensure they do not select a destination that would be unreasonable to return home from. Our method is completely open and replicable, requiring only publicly available data to generate a synthetic population of agents compatible with commonly used agent-based modeling software such as MATSim. The synthetic population was found to be accurate in terms of distance distribution, mode choice, and destination choice for a variety of population sizes.
翻译:在本文中,我们用机器学习、概率和重力法相结合的方法为大墨尔本地区创造合成人口提供了一种算法。我们将这些技术结合到混合模型中,并有三项主要创新:1. 在分配活动模式时,我们为每个代理商制定适合其组群的单项活动链;2. 在选择目的地时,我们的目标是在旅行长度的距离-下降与目的地地点的活动吸引之间取得平衡;3. 我们考虑到代理商的剩余旅行次数,以确保他们不选择一个不合理回家的目的地。我们的方法是完全开放和可复制的,只需要公开可得的数据来生成一个与通常使用的代理商模型软件(如MATSim)相兼容的合成物剂群。合成人口在远距离分布、模式选择和不同人口规模的目的地选择方面是准确的。