An important component of a number of computational modeling algorithms is an interpolation method that preserves the positivity of the function being interpolated. This report describes the numerical testing of a new positivity-preserving algorithm that is designed to be used when interpolating from a solution defined on one grid to different spatial grid. The motivating application for this work was a numerical weather prediction (NWP) code that uses a spectral element mesh discretization for its dynamics core and a cartesian tensor product mesh for the evaluation of its physics routines. This coupling of spectral element mesh, which uses nonuniformly spaced quadrature/collocation points, and uniformly-spaced cartesian mesh combined with the desire to maintain positivity when moving between these meshes necessitates our work. This new approach is evaluated against several typical algorithms in use on a range of test problems in one or more space dimensions. The results obtained show that the new method is competitive in terms of observed accuracy while at the same time preserving the underlying positivity of the functions being interpolated.
翻译:计算模型算法中的一个重要部分是一种内插方法,它保持了被内插函数的正比性。本报告描述了设计用于从一个网格上定义的解决方案从一个网格到不同的空间网格的插图时使用的一种新的正比保护算法的数值测试。这项工作的动力应用是一种数字天气预测(NWP)代码,该代码使用光谱元元元元元分解其动态核心,并使用碳酸盐色色素产品网格来评价其物理常规。这种混合的光谱元素网格使用非单方形的间距二次方位/对齐点,以及统一空间的cartesian网格结合了在移动这些网格到需要我们工作时保持正比性的愿望。这一新方法是参照用于一个或一个以上空间维度的一系列试验问题的几种典型算法进行评估的。结果表明,新方法在观察准确性方面具有竞争性,同时保持了被内插函数的基本假设性。