With the rapidly increasing ability to collect and analyze personal data, data privacy becomes an emerging concern. In this work, we develop a new statistical notion of local privacy to protect each categorical data that will be collected by untrusted entities. The proposed solution, named subset privacy, privatizes the original data value by replacing it with a random subset containing that value. We develop methods for the estimation of distribution functions and independence testing from subset-private data with theoretical guarantees. We also study different mechanisms to realize the subset privacy and evaluation metrics to quantify the amount of privacy in practice. Experimental results on both simulated and real-world datasets demonstrate the encouraging performance of the developed concepts and methods.


翻译:随着收集和分析个人数据的能力迅速提高,数据隐私就成为一个新出现的关注问题。在这项工作中,我们开发了一个新的地方隐私统计概念,以保护将由不受信任的实体收集的每一项绝对数据。拟议的解决方案名为子集隐私,将原始数据价值私有化,代之以含有该价值的随机子集。我们开发了根据理论保证从子集私营数据估算分配功能和独立测试的方法。我们还研究了不同机制,以实现子集隐私和评价指标,以量化实践中的隐私数量。模拟和现实世界数据集的实验结果显示了发达概念和方法的令人鼓舞的表现。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月3日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员