Instrumental variable (IV) regression relies on instruments to infer causal effects from observational data with unobserved confounding. We consider IV regression in time series models, such as vector auto-regressive (VAR) processes. Direct applications of i.i.d. techniques are generally inconsistent as they do not correctly adjust for dependencies in the past. In this paper, we propose methodology for constructing identifying equations that can be used for consistently estimating causal effects. To do so, we develop nuisance IV, which can be of interest even in the i.i.d. case, as it generalizes existing IV methods. We further propose a graph marginalization framework that allows us to apply nuisance and other IV methods in a principled way to time series. Our framework builds on the global Markov property, which we prove holds for VAR processes. For VAR(1) processes, we prove identifiability conditions that relate to Jordan forms and are different from the well-known rank conditions in the i.i.d. case (they do not require as many instruments as covariates, for example). We provide methods, prove their consistency, and show how the inferred causal effect can be used for distribution generalization. Simulation experiments corroborate our theoretical results. We provide ready-to-use Python code.
翻译:仪器变量( IV) 回归依靠各种工具推断观测数据与未观察到的混乱状态的因果关系。 我们考虑时间序列模型中的四级回归,如矢量自动递减( VAR) 进程。 i. d. 技术的直接应用通常不一致,因为它们过去没有正确调整依赖性。 在本文件中,我们提出了构建可用于持续估计因果关系的方程式的方法。 为了这样做,我们开发了四级障碍,即使对i. i.d. 案件也感兴趣,因为它概括了现有的四级方法。我们进一步提出了一个图表边缘化框架,允许我们在时间序列中以有原则的方式应用模糊性和其他四级方法。 我们的框架建立在我们证明适用于VAR进程的全球马尔科夫属性上。 关于VAR(1) 进程,我们证明与约旦表格有关并且不同于i. d. 案件已知等级条件的可识别性条件。 (它们并不要求许多工具作为共变式,例如) 。 我们提供了方法, 证明了它们的一致性和其他四级方法。 我们提供了用于模拟结果的理论推算。