Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
翻译:物体移动识别是计算机视觉领域研究最多的问题之一。 在此任务中, 我们试图将像素归类为前景或背景。 尽管已经存在许多传统的机器学习和深层学习方法, 但其中多数存在的两大问题是需要大量地面真相数据, 以及其无法见的视频上的低效性能。 由于每个框架的每个像素都必须贴上标签, 获取大量这些技术的数据会变得相当昂贵。 最近, Zhao 等人 。 [1] 提出了一种类类类的自然分布神经网络( ADNN ), 用于通用背景减法, 利用时间像素直观的概率信息, 并取得有希望的结果。 在这项工作上, 我们开发了一个智能视频监控系统, 利用ADNN 结构来检测运动, 将视频的部件与仅包含运动的部件进行剪切, 并在三曲视频上进行异常现象的检测 。