In the attention-deficit hyperactivity disorder (ADHD) study, children are prescribed different stimulant medications. The height measurements are recorded longitudinally along with the medication time. Differences among the patients are captured by the parameters suggested the Superimposition by Translation and Rotation (SITAR) model using three subject-specific parameters to estimate their deviation from the mean growth curve. In this paper, we generalize the SITAR model in a Bayesian way with time-invariant covariates. The time-invariant model allows us to predict latent growth factors. Since patients suffer from a common disease, they usually exhibit a similar pattern, and it is natural to build a nonlinear model that is shaped invariant. The model is semi-parametric, where the population time curve is modeled with a natural cubic spline. The original shape invariant growth curve model, motivated by epidemiological research on the evolution of pubertal heights over time, fits the underlying shape function for height over age and estimates subject-specific deviations from this curve in terms of size, tempo, and velocity using maximum likelihood. The usefulness of the model is illustrated in the attention deficit hyperactivity disorder (ADHD) study. Further, we demonstrated the effect of stimulant medications on pubertal growth by gender.
翻译:在注意力-缺省多动障碍(ADHD)研究中,儿童被处以不同的兴奋剂药物。高度测量与药物时间一起记录在长距离上。病人的差别通过参数来记录:翻译和轮调(SITAR)模型的超模(SITAR)模型,使用三个特定主题参数来估计他们偏离平均增长曲线的情况。在本文中,我们用时间变化性共变式的巴耶斯模式对SITAR模型进行概括化。时间变化性模型使我们能够预测潜在的生长因素。由于病人患有一种常见疾病,他们通常表现出类似的模式,并且自然地建立一种非线性模型,这种模型是不变的。模型是半参数,人口时间曲线是用自然立立柱模型模型模型来模型,用来估计他们偏离平均增长曲线的情况。在对阴性高的演变进行流行病学研究之后,我们用时间差异性模型可以预测潜在的形状功能,从而可以预测出这种曲线在规模、温度和速度上的差异。在最大可能性下,建立非线性模型是自然的。该模型是半参数,用自然的模型是用自然线模型,用自然立体曲线模型,用自然立形模型用自然立曲线来模拟模型,用自然线来模拟模型的模型,根据时间变化变化的变化变化变化变化变化模型,用药物反应来显示了我们体变化的变化变化变化变化的变化。