Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and inference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. Ablation studies and a qualitative analysis provide more insights into our approach.
翻译:GPT-3等大型语言模型是优秀的少数学员,能够通过自然文本提示来控制这些模型。最近的研究表明,基于即时的直接分类消除了微调的需要,但缺乏数据和推论的可缩放性。本文建议采用新的数据增强技术,利用大规模语言模型,从实际样本的混合中产生现实的文本样本。我们还提议使用语言模型预测的软标签,有效地提炼大型语言模型的知识,同时创造文本扰动。我们进行了关于不同分类任务的数据扩充实验,并表明我们的方法大大超过现有的文本增强方法。吸收研究和定性分析为我们的方法提供了更多的见解。