Hugging Face出品:如何快速跟上NLP领域最新技术?

2019 年 5 月 23 日 专知

【导读】Hugging Face团队的大牛们,在博客上分享了自己认为的,能够帮助你了解自然语言处理前沿问题和技术的论文列表,小编将文章翻译成了中文,大家一起来看看吧。


原文地址: 

https://medium.com/huggingface/the-best-and-most-current-of-modern-natural-language-processing-5055f409a1d1

作者:Hugging Face

翻译:专知


在过去的两年中,大家都见证了自然语言处理在各种不同任务和应用程序上的飞速进展。这一发展是由于我们改变了以往的NLP研究方法所导致的。


过去的很长一段时间,我们使用pre-trained 的 word embedding 比如word2vec或Glove等初始化神经网络的第一层,然后在它后面,在附上特定于任务的架构,然后以有监督的方式在某一个数据集上训练。


但是,近期,有几项研究表明,我们可以利用非监督(或自监督)信号(如语言建模),在web规模的数据集上学习分层上下文表示,并将这种预训练结果,转移到下游任务(转移学习)。更令人兴奋的是,这种转变导致了下游应用领域的重大进展,从QA到自然语言推理……


几周前,我的一个朋友决定投身于NLP。他已经有机器学习和深度学习的背景,所以他真诚地问我:“我可以阅读哪些论文来跟上现代NLP的最新趋势?”


这是一个非常好的问题,尤其是当您考虑到NLP会议(以及一般的ML会议)收到的提交论文数量呈指数级增长时:+80%的ACL 2019 VS 2018, +90% ACL 2019 VS 2018,……


我为他整理了这一系列的论文和资源,我也很高兴将这个列表与社区分享,因为我相信它可以对很多人有用。


免责声明:本列表不是详尽的,也不是涵盖NLP中的每个主题(例如,没有关于语义解析、对抗性学习、应用于NLP的强化学习等)。这本书是过去几年/几个月(截止2019年5月)最具影响力的作品之一,主要受我所读内容的影响。


迁移学习 Transfer Learning


  • Deep contextualized word representations (NAACL 2018)

    Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer

  • Universal Language Model Fine-tuning for Text Classification (ACL 2018)

    Jeremy Howard, Sebastian Ruder

  • Improving Language Understanding by Generative Pre-Training

    Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever

  • Language Models are Unsupervised Multitask Learners

    Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (NAACL 2019)

    Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

  • Cloze-driven Pretraining of Self-attention Networks (arXiv 2019)

    Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, Michael Auli

  • Unified Language Model Pre-training for Natural Language Understanding and Generation (arXiv 2019)

    Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, Hsiao-Wuen Hon

  • MASS: Masked Sequence to Sequence Pre-training for Language Generation (ICML 2019)

    Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu




表示学习 Representation Learning

  • What you can cram into a single vector: Probing sentence embeddings for linguistic properties (ACL 2018)

    Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, Marco Baroni

  • No Training Required: Exploring Random Encoders for Sentence Classification (ICLR 2019)

    John Wieting, Douwe Kiela

  • GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding (ICLR 2019)

    Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel R. Bowman

  • SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems (arXiv 2019)

    Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel R. Bowman

  • Linguistic Knowledge and Transferability of Contextual Representations(NAACL 2019)

    Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith

  • To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks (arXiv 2019)

    Matthew Peters, Sebastian Ruder, Noah A. Smith



神经网络对话 Neural Dialogue

  • A Neural Conversational Model (ICML Deep Learning Workshop 2015)

    Oriol Vinyals, Quoc Le

  • A Persona-Based Neural Conversation Model (ACL 2016)

    Jiwei Li, Michel Galley, Chris Brockett, Georgios P. Spithourakis, Jianfeng Gao, Bill Dolan

  • A Simple, Fast Diverse Decoding Algorithm for Neural Generation (arXiv 2017)

    Jiwei Li, Will Monroe, Dan Jurafsky

  • Neural Approaches to Conversational AI (arXiv 2018)

    Jianfeng Gao, Michel Galley, Lihong Li

  • TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents (NeurIPS 2018 CAI Workshop)

    Thomas Wolf, Victor Sanh, Julien Chaumond, Clement Delangue

  • Wizard of Wikipedia: Knowledge-Powered Conversational agents (ICLR 2019)

    Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, Jason Weston

  • Learning to Speak and Act in a Fantasy Text Adventure Game (arXiv 2019)

    Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim Rocktäschel, Douwe Kiela, Arthur Szlam, Jason Weston



各种工具 Various picks

  • Pointer Networks (NIPS 2015)

    Oriol Vinyals, Meire Fortunato, Navdeep Jaitly

  • End-To-End Memory Networks (NIPS 2015)

    Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus

  • Get To The Point: Summarization with Pointer-Generator Networks (ACL 2017)

    Abigail See, Peter J. Liu, Christopher D. Manning

  • Supervised Learning of Universal Sentence Representations from Natural Language Inference Data (EMNLP 2017)

    Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, Antoine Bordes

  • End-to-end Neural Coreference Resolution (EMNLP 2017)

    Kenton Lee, Luheng He, Mike Lewis, Luke Zettlemoyer

  • StarSpace: Embed All The Things! (AAAI 2018)

    Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, Jason Weston

  • The Natural Language Decathlon: Multitask Learning as Question Answering (arXiv 2018)

    Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, Richard Socher

  • Character-Level Language Modeling with Deeper Self-Attention (arXiv 2018)

    Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, Llion Jones

  • Linguistically-Informed Self-Attention for Semantic Role Labeling (EMNLP 2018)

    Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, Andrew McCallum

  • Phrase-Based & Neural Unsupervised Machine Translation (EMNLP 2018)

    Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, Marc’Aurelio Ranzato

  • Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning (ICLR 2018)

    Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher J Pal

  • Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (arXiv 2019)

    Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov

  • Universal Transformers (ICLR 2019)

    Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser

  • An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models (NAACL 2019)

    Alexandra Chronopoulou, Christos Baziotis, Alexandros Potamianos


对于一些老的文章,引用数量通常是一个好的指标。


通用资料 General resources


书籍 Books

  • Speech and Language Processing (3rd ed. draft)

    Dan Jurafsky and James H. Martin

  • Neural Network Methods for Natural Language Processing

    Yoav Goldberg


课程 Course materials

  • Natural Language Understanding and Computational Semantics with Katharina Kann and Sam Bowman at NYU

  • CS224n: Natural Language Processing with Deep Learning with Chris Manning and Abigail See at Standford

  • Contextual Word Representations: A Contextual Introduction from Noah Smith’s teaching material at UW


博客 Blogs/podcasts

  • Sebastian Ruder’s blog

  • Jay Alammar’s illustrated blog

  • NLP Highlights hosted by Matt Gardner and Waleed Ammar


其他 Others

  • Papers With Code

  • Twitter 

  • arXiv daily newsletter

  • Survey papers



阅读以上资源应该已经能让你对当代NLP的最新趋势有了很好的了解,希望它们能够帮助您构建自己的NLP系统!


最后一件我在这篇文章中没有过多讨论的事情,但我发现非常重要的是,阅读是好的,代码复现更是重要! 通过深入阅读(有时)附带的代码或尝试自己实现其中的一些代码,您常常可以学到更多。实用资源包括来自fast.ai的令人惊叹的博客文章和课程。或者我们的开源软件库。


-END-

专 · 知

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!540+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
15

相关内容

【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
BERT进展2019四篇必读论文
专知会员服务
67+阅读 · 2020年1月2日
【文章|BERT三步使用NLP迁移学习】NLP Transfer Learning In 3 Steps
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
34篇最新论文带你快速跟进NLP领域技术(附下载)
教程帖:如何解决90%的NLP问题(上)
论智
3+阅读 · 2018年2月12日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
34篇最新论文带你快速跟进NLP领域技术(附下载)
教程帖:如何解决90%的NLP问题(上)
论智
3+阅读 · 2018年2月12日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员