There is a fundamental limitation in the prediction performance that a machine learning model can achieve due to the inevitable uncertainty of the prediction target. In classification problems, this can be characterized by the Bayes error, which is the best achievable error with any classifier. The Bayes error can be used as a criterion to evaluate classifiers with state-of-the-art performance and can be used to detect test set overfitting. We propose a simple and direct Bayes error estimator, where we just take the mean of the labels that show \emph{uncertainty} of the class assignments. Our flexible approach enables us to perform Bayes error estimation even for weakly supervised data. In contrast to others, our method is model-free and even instance-free. Moreover, it has no hyperparameters and gives a more accurate estimate of the Bayes error than several baselines empirically. Experiments using our method suggest that recently proposed deep networks such as the Vision Transformer may have reached, or is about to reach, the Bayes error for benchmark datasets. Finally, we discuss how we can study the inherent difficulty of the acceptance/rejection decision for scientific articles, by estimating the Bayes error of the ICLR papers from 2017 to 2023.
翻译:由于预测目标的必然不确定性,机器学习模型能够实现的预测性能存在一个根本性的限制。在分类问题中,这可以用贝耶斯错误来描述,这是任何分类者最佳的可实现错误。贝耶斯错误可以用作评估具有最先进性能的分类者的标准,可以用来检测测试设置过度的测试。我们提出了一个简单直接的贝耶斯错误估计器,我们只是采用显示等级任务中 memph{uncertainty} 的标签的平均值。我们灵活的方法使我们能够进行贝耶斯错误估计,即使对受监管不力的数据也是如此。与其他方法相比,我们的方法是没有模型的,甚至没有实例的。此外,它没有超参数,而且比几个基线更准确地估计贝耶斯错误。我们用方法进行的实验表明,最近提出的深度网络,例如愿景变异器可能达到,或者即将达到基准数据集的贝耶斯错误。最后,我们讨论了我们如何研究从20世纪17年科学论文的接受/截断点错误到20世纪17年科学论文的内在困难。</s>