Learning arguments is highly relevant to the field of explainable artificial intelligence. It is a family of symbolic machine learning techniques that is particularly human-interpretable. These techniques learn a set of arguments as an intermediate representation. Arguments are small rules with exceptions that can be chained to larger arguments for making predictions or decisions. We investigate the learning of arguments, specifically the learning of arguments from a 'case model' proposed by Verheij [34]. The case model in Verheij's approach are cases or scenarios in a legal setting. The number of cases in a case model are relatively low. Here, we investigate whether Verheij's approach can be used for learning arguments from other types of data sets with a much larger number of instances. We compare the learning of arguments from a case model with the HeRO algorithm [15] and learning a decision tree.
翻译:学习理论与可解释的人工智能领域密切相关。 这是一个具有象征性机器学习技术的大家庭,特别具有人类的解释性。这些技术学习了一套作为中间代表的理论。 参数是小规则,但可以与更大的预测或决定的论据相链接的例外。 我们调查了从论据中学习,特别是从Verheij提出的“案例模型”中学习论点 [34] 。 Verheij方法的案例模型是法律环境中的案例或假设。 案例模型中的案件数量相对较低。 我们在这里调查Verheij的方法是否可以用于从其他类型的数据集中学习论点,而实例数量要多得多。 我们比较了从案例模型中学习论点的情况与HERO算法[15],并学习了决策树。