Cluster randomized trials (CRTs) are a popular design to study the effect of interventions in infectious disease settings. However, standard analysis of CRTs primarily relies on strong parametric methods, usually a Normal mixed effect models to account for the clustering structure, and focus on the overall intent-to-treat (ITT) effect to evaluate effectiveness. The paper presents two methods to analyze two types of effects in CRTs, the overall and heterogeneous ITT effects and the spillover effect among never-takers who cannot or refuse to take the intervention. For the ITT effects, we make a modest extension of an existing method where we do not impose parametric models or asymptotic restrictions on cluster size. For the spillover effect among never-takers, we propose a new bound-based method that uses pre-treatment covariates, classification algorithms, and a linear program to obtain sharp bounds. A key feature of our method is that the bounds can become dramatically narrower as the classification algorithm improves and the method may also be useful for studies of partial identification with instrumental variables. We conclude by reanalyzing a CRT studying the effect of face masks and hand sanitizers on transmission of 2008 interpandemic influenza in Hong Kong.
翻译:聚类随机试验(CRTs)是研究传染病环境中干预效果的流行设计。然而,对聚类随机试验的标准分析主要依赖强力参数分析方法,通常是用于计算群集结构的正常混合效应模型,侧重于总体意图至治疗效应,以评价有效性。本文提出了两种方法,用以分析聚类试验中两种类型的效应,即全面且多样的ITT效应以及从未接受过干预者之间无法或拒绝接受干预的外溢效应。对于ITT效应,我们适度扩展了现有方法,即不对聚类尺寸施加准模型或无药限制。关于永不接受者之间的外溢效应,我们建议采用新的约束性方法,使用预处理共变法、分类算法和直线程序,以获得清晰的界限。我们方法的一个关键特征是,随着分类算法的改进,界限会变得非常狭窄,而且该方法也可能有助于研究部分识别工具变量。我们的结论是,通过对CRT队在2008年香港面面面面面面面和手麻利器之间传输的效果进行再分析。