Reconfiguration problems require finding a step-by-step transformation between a pair of feasible solutions for a particular problem. The primary concern in Theoretical Computer Science has been revealing their computational complexity for classical problems. This paper presents an initial study on reconfiguration problems derived from a submodular function, which has more of a flavor of Data Mining. Our submodular reconfiguration problems request to find a solution sequence connecting two input solutions such that each solution has an objective value above a threshold in a submodular function $f: 2^{[n]} \to \mathbb{R}_+$ and is obtained from the previous one by applying a simple transformation rule. We formulate three reconfiguration problems: Monotone Submodular Reconfiguration (MSReco), which applies to influence maximization, and two versions of Unconstrained Submodular Reconfiguration (USReco), which apply to determinantal point processes. Our contributions are summarized as follows: 1. We prove that MSReco and USReco are both $\mathsf{PSPACE}$-complete. 2. We design a $\frac{1}{2}$-approximation algorithm for MSReco and a $\frac{1}{n}$-approximation algorithm for (one version of) USReco. 3. We devise inapproximability results that approximating the optimum value of MSReco within a $(1-\frac{1+\epsilon}{n^2})$-factor is $\mathsf{PSPACE}$-hard, and we cannot find a $(\frac{5}{6}+\epsilon)$-approximation for USReco. 4. We conduct numerical study on the reconfiguration version of influence maximization and determinantal point processes using real-world social network and movie rating data.


翻译:重新配置问题需要在对特定问题的一对可行解决方案中找到一个渐进式的转换 。 理论计算机科学中的主要关切是揭示了它们对于古典问题的计算复杂性 。 本文展示了对子模块函数产生的重组问题的初步研究, 子模块功能更具有数据开采的味道 。 我们的子模块重组问题要求找到一个解决方案序列, 将两种输入解决方案连接起来, 这样每个解决方案在子模块函数中具有高于阈值的客观值 $f: 2 ⁇ [n]\ to\ mathb{R ⁇ } 。 并且通过应用简单的转换规则从上一个模块中获得。 我们提出了三个重新配置问题: 用于影响最大化的莫多酮子模块重新配置(MSReco), 以及两个版本的不协调的子模块重新配置(USRecomocal Remocal) $\%1[Pxxxi=xxxi=xxxxxxxxxxxxxxxxxxxxxxxx) 数据。 我们设计了一个US- demo- demo- demo- demodeal a disal=xxxxxxxxxxxxxxxx dal 和MS- a.

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2020年8月3日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
0+阅读 · 2022年1月29日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员