Multiple moving sound source localization in real-world scenarios remains a challenging issue due to interaction between sources, time-varying trajectories, distorted spatial cues, etc. In this work, we propose to use deep learning techniques to learn competing and time-varying direct-path phase differences for localizing multiple moving sound sources. A causal convolutional recurrent neural network is designed to extract the direct-path phase difference sequence from signals of each microphone pair. To avoid the assignment ambiguity and the problem of uncertain output-dimension encountered when simultaneously predicting multiple targets, the learning target is designed in a weighted sum format, which encodes source activity in the weight and direct-path phase differences in the summed value. The learned direct-path phase differences for all microphone pairs can be directly used to construct the spatial spectrum according to the formulation of steered response power (SRP). This deep neural network (DNN) based SRP method is referred to as SRP-DNN. The locations of sources are estimated by iteratively detecting and removing the dominant source from the spatial spectrum, in which way the interaction between sources is reduced. Experimental results on both simulated and real-world data show the superiority of the proposed method in the presence of noise and reverberation.


翻译:在现实世界情景中,由于源、时间变化轨迹、扭曲的空间信号等之间的相互作用,多重移动源的多重声音源本地化仍然是一个具有挑战性的问题。 在这项工作中,我们提议使用深层次的学习技术,学习竞争和时间变化的直接偏向阶段差异,以对多个移动声音源进行本地化。一个因果循环神经网络的设计,目的是从每个麦克风配对的信号中提取直接偏向阶段差异序列。为了避免分配模棱两可和在同时预测多个目标时遇到产出分化的不确定性问题,学习目标的设计是以加权和总和的形式,将源活动在重量和直向相阶段的差异编码。所有麦克风配对所学的直接正向阶段差异可以直接用于根据定向响应能量的配制(SRP)来构建空间频谱。基于SRP方法的深神经网络(DNNN)被称为SRP-DNNN。源的位置是通过迭代探测和从空间频谱中去除主要源来估计的,从而缩小源之间的相互作用。模拟和真实世界数据定位的结果显示,在模拟和真实数据中显示的优越性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员