In the past ten years there have been significant developments in optimization of transcoding parameters on a per-clip rather than per-genre basis. In our recent work we have presented per-clip optimization for the Lagrangian multiplier in Rate controlled compression, which yielded BD-Rate improvements of approximately 2\% across a corpus of videos using HEVC. However, in a video streaming application, the focus is on optimizing the rate/distortion tradeoff at a particular bitrate and not on average across a range of performance. We observed in previous work that a particular multiplier might give BD rate improvements over a certain range of bitrates, but not the entire range. Using different parameters across the range would improve gains overall. Therefore here we present a framework for choosing the best Lagrangian multiplier on a per-operating point basis across a range of bitrates. In effect, we are trying to find the para-optimal gain across bitrate and distortion for a single clip. In the experiments presented we employ direct optimization techniques to estimate this Lagrangian parameter path approximately 2,000 video clips. The clips are primarily from the YouTube-UGC dataset. We optimize both for bitrate savings as well as distortion metrics (PSNR, SSIM).
翻译:过去十年来,在优化按每千焦而不是按人均计算的转码参数方面取得了显著进展。在我们最近的工作中,我们为拉格朗加乘数在速控压缩中提出了每千字节优化拉格朗加乘数的优化,从而在使用HEVC的一组视频中使BD-Rate改进了大约2 ⁇ 。然而,在视频流应用中,重点是在特定位数而不是各种性能中平均优化速率/扭曲取舍。我们在以往的工作中观察到,某个特定乘数可能对一定范围的比特率而不是整个范围带来BD率的改善。使用不同参数将改善总体收益。因此,我们在此提出了一个框架,用于在一系列比特率的每个操作点上选择最佳的Lagrangagian乘数。实际上,我们正试图为单个剪辑找到超位率率和扭曲的准增益。在先前的实验中,我们使用了直接的优化技术来估计这一拉格朗参数路径约为2,000比特,但并非整个范围。使用不同参数的参数将改善整个范围。使用不同的参数参数将改善总体收益。因此,我们提出了一个框架主要是从AS-UM数据中进行优化。