This report aims to survey multi-agent Q-Learning algorithms, analyze different game theory frameworks used, address each framework's applications, and report challenges and future directions. The target application for this study is resource management in the wireless sensor network. In the first section, the author provided an introduction regarding the applications of wireless sensor networks. After that, the author presented a summary of the Q-Learning algorithm, a well-known classic solution for model-free reinforcement learning problems. In the third section, the author extended the Q-Learning algorithm for multi-agent scenarios and discussed its challenges. In the fourth section, the author surveyed sets of game-theoretic frameworks that researchers used to address this problem for resource allocation and task scheduling in the wireless sensor networks. Lastly, the author mentioned some interesting open challenges in this domain.
翻译:本报告旨在调查多试剂Q-学习算法,分析所使用的不同游戏理论框架,处理每个框架的应用,并报告挑战和未来方向。本研究的目标应用是无线传感器网络的资源管理。在第一部分,作者介绍了无线传感器网络的应用情况,随后,作者介绍了Q-学习算法的概要,这是众所周知的无模式强化学习问题经典解决办法。在第三部分,作者扩展了多试剂情景的Q-学习算法,并讨论了它的挑战。在第四节,作者调查了研究人员用来解决这一问题的一组游戏理论框架,用于在无线传感器网络中分配资源和安排任务。最后,作者提到了这一领域一些令人感兴趣的公开挑战。