We investigate the use of spatial interpolation methods for reconstructing the horizontal near-surface wind field given a sparse set of measurements. In particular, random Fourier features is compared to a set of benchmark methods including Kriging and Inverse distance weighting. Random Fourier features is a linear model $\beta(\pmb x) = \sum_{k=1}^K \beta_k e^{i\omega_k \pmb x}$ approximating the velocity field, with frequencies $\omega_k$ randomly sampled and amplitudes $\beta_k$ trained to minimize a loss function. We include a physically motivated divergence penalty term $|\nabla \cdot \beta(\pmb x)|^2$, as well as a penalty on the Sobolev norm. We derive a bound on the generalization error and derive a sampling density that minimizes the bound. Following (arXiv:2007.10683 [math.NA]), we devise an adaptive Metropolis-Hastings algorithm for sampling the frequencies of the optimal distribution. In our experiments, our random Fourier features model outperforms the benchmark models.


翻译:我们调查了利用空间内插法重建水平近表面风场的方法,因为测量量很少。 特别是, 随机的Fourier特征与一套基准方法比较, 包括克里格和反距离加权。 随机的Fourier特征是一个线性模型$\beta( pmbx) =\ sum ⁇ k=1 ⁇ K\\k\ k\ ⁇ k e ⁇ i\ i\ omega_k\ pmb x}, 以随机抽样频率$\omega_k$k k$k 来重建速度场。 随机抽样的频率为$\beta_ k, 并训练振幅 $\ beta_ k_ kt 来尽量减少损失功能。 我们使用一个有物理动机的偏差罚款术语 $ ⁇ nabla\ cdot\ cdotat\ beta( pmbxx) $2$, 是对Sobolev 规范的罚款。 我们从一般误差和取样密度中得出一个最小的密度。 随后 (ariv: 2007. 10683 [math.NA], 我们设计一个适应的Metopier 模型- hasting- hasting slogting sloging sloging exmlations exmlations expealbislations slations slations slations ex

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
76+阅读 · 2021年3月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Model-based clustering of partial records
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员