Generating a vivid, novel, and diverse essay with only several given topic words is a challenging task of natural language generation. In previous work, there are two problems left unsolved: neglect of sentiment beneath the text and insufficient utilization of topic-related knowledge. Therefore, we propose a novel Sentiment-Controllable topic-to-essay generator with a Topic Knowledge Graph enhanced decoder, named SCTKG, which is based on the conditional variational autoencoder (CVAE) framework. We firstly inject the sentiment information into the generator for controlling sentiment for each sentence, which leads to various generated essays. Then we design a Topic Knowledge Graph enhanced decoder. Unlike existing models that use knowledge entities separately, our model treats the knowledge graph as a whole and encodes more structured, connected semantic information in the graph to generate a more relevant essay. Experimental results show that our SCTKG can generate sentiment controllable essays and outperform the state-of-the-art approach in terms of topic relevance, fluency, and diversity on both automatic and human evaluation.
翻译:生成一个生动、小说和多样化的论文,只有几个特定主题词,是自然语言生成的艰巨任务。在以往的工作中,有两个问题没有解决:在文本下忽视情绪,没有充分利用与主题有关的知识。因此,我们提议建立一个新型的感知控制主题对分析生成器,配有名为SCTKG的“专题知识图增强解码器”,该解码器以有条件的变异自动编码器(CVAE)框架为基础。我们首先将感知信息输入生成器,以控制每个句子的情绪,导致产生各种文章。然后我们设计一个专题知识图。与分别使用知识实体的现有模型不同,我们的模式将知识图作为一个整体处理,并将图中更结构化、更相联的语义信息编码,以产生更相关的论文。实验结果显示,我们的SCTKG能够产生感知可控的作文,并超越在主题相关性、流利度以及自动和人类评估的多样性方面的最新方法。