Quality control is a crux of crowdsourcing. While most means for quality control are organizational and imply worker selection, golden tasks, and post-acceptance, computational quality control techniques allow parameterizing the whole crowdsourcing process of workers, tasks, and labels, inferring and revealing relationships between them. In this paper, we present Crowd-Kit, a general-purpose crowdsourcing computational quality control toolkit. It provides efficient implementations in Python of computational quality control algorithms for crowdsourcing, including data quality estimators and truth inference methods. We focus on aggregation methods for all the major annotation tasks, from the categorical annotation in which latent label assumption is met to more complex tasks like image and sequence aggregation. We perform an extensive evaluation of our toolkit on several datasets of different natures, enabling benchmarking computational quality control methods in a uniform, systematic, and reproducible way using the same codebase. We release our code and data under an open-source license at https://github.com/Toloka/crowd-kit.
翻译:质量控制是众包的柱石。 虽然大多数质量控制手段都是组织性的,意味着工人的选择、黄金任务和接受后的任务,但计算质量控制技术允许将工人、任务和标签的整个众包过程、任务和标签的参数化,推断和揭示他们之间的关系。本文介绍Crowd-Kit,这是通用的众包计算质量控制工具包。它为众包计算质量控制算法的Python提供了高效的实施,包括数据质量估测器和真相推断方法。我们侧重于所有主要说明任务的汇总方法,从满足潜在标签假设的绝对注解到更复杂的任务,如图像和序列汇总。我们广泛评价了我们关于不同性质的若干数据集的工具包,使得能够以统一、系统和可复制的方式,以统一、系统和使用同一代码库来基准计算质量控制方法。我们在https://github.com/Toloka/crowd-kit的公开源许可证下公布了我们的代码和数据。