Saddle points play important roles as the transition states of activated process in gradient system driven by energy functional. However, for the same energy functional, the saddle points, as well as other stationary points, are different in different metrics such as the $L^2$ metric and the $H^{-1}$ metric. The saddle point calculation in $H^{-1}$ metric is more challenging with much higher computational cost since it involves higher order derivative in space and the inner product calculation needs to solve another Possion equation to get the $\Delta^{-1}$ operator. In this paper, we introduce the projection idea to the existing saddle point search methods, gentlest ascent dynamics (GAD) and iterative minimization formulation (IMF), to overcome this numerical challenge due to $H^{-1}$ metric. Our new method in the $L^2$ metric only by carefully incorporates a simple linear projection step. We show that our projection method maintains the same convergence speed of the original GAD and IMF, but the new algorithm is much faster than the direct method for $H^{-1}$ problem. The numerical results of saddle points in the one dimensional Ginzburg-Landau free energy and the two dimensional Landau-Brazovskii free energy in $H^{-1}$ metric are presented to demonstrate the efficiency of this new method.


翻译:由于在由能源功能驱动的梯度系统中启动的流程的转型状态,搭载点起着重要作用。然而,对于同样的能源功能,马鞍点和其他固定点在不同的标准上是不同的,如$L$2美元公尺和$H$1美元公尺。用$H ⁇ -1美元公尺计算马鞍点的计算更具有挑战性,因为计算成本要高得多,因为它涉及空间中较高的顺序衍生物,而内产产品计算需要解决另一个波子方程,以获得美元=Delta ⁇ _1美元运营商。在本文中,我们将投影点构想引入了现有的加油点搜索方法、温和升动力(GAD)以及迭代最小化配方(IMF),以克服由于$H%1美元公尺的数值挑战。我们以$L%2美元的新计算方法,只是仔细地纳入简单的线性预测步骤。我们预测的方法保持了原始GAD和IMF的趋同速度,但新的算法比美元的直接方法快得多。在1H+1美元-1美元的直接方法中, 温色动力动力动力动力动力动力(IMLAxxxxlus-laz_lus_I_laz_lusl_I_l_l_lg_lationxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx的能源效率)问题。

0
下载
关闭预览

相关内容

在数学中,鞍点或极大极小点是函数图形表面上的一点,其正交方向上的斜率(导数)都为零,但它不是函数的局部极值。鞍点是在某一轴向(峰值之间)有一个相对最小的临界点,在交叉轴上有一个相对最大的临界点。
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年11月21日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Preconditioning Parametrized Linear Systems
Arxiv
0+阅读 · 2020年12月17日
Arxiv
0+阅读 · 2020年12月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员