Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real-world. However, the massive size and continuous nature of these networks make them fundamentally challenging to analyze and leverage for descriptive and predictive modeling tasks. In this work, we propose a general framework for temporal network sampling with unbiased estimation. We develop online, single-pass sampling algorithms and unbiased estimators for temporal network sampling. The proposed algorithms enable fast, accurate, and memory-efficient statistical estimation of temporal network patterns and properties. In addition, we propose a temporally decaying sampling algorithm with unbiased estimators for studying networks that evolve in continuous time, where the strength of links is a function of time, and the motif patterns are temporally-weighted. In contrast to the prior notion of a $\bigtriangleup t$-temporal motif, the proposed formulation and algorithms for counting temporally weighted motifs are useful for forecasting tasks in networks such as predicting future links, or a future time-series variable of nodes and links. Finally, extensive experiments on a variety of temporal networks from different domains demonstrate the effectiveness of the proposed algorithms. A detailed ablation study is provided to understand the impact of the various components of the proposed framework.
翻译:代表时标边缘流的时空网络在现实世界中似乎无处不在。 然而,这些网络的庞大规模和持续性质使其在分析和利用描述性和预测性模型任务方面具有根本的挑战性。 在这项工作中,我们提出一个用于时间网络抽样的一般框架,且不作任何估计。我们开发了在线、单通过抽样算法和用于时间网络抽样的公正估计值。提议的算法能够快速、准确和记忆高效地对时间网络模式和属性进行统计估计。此外,我们提议采用一种暂时衰减的抽样算法,用公正的估计器来研究在连续时间演变的网络,在这些网络中,链接的强度是时间函数,而模型模式是暂时加权的。与先前的“美元大三角关系t$-时间模型”概念不同,拟议的计算时间加权模型和算法有助于预测网络的任务,例如预测未来联系,或未来时间序列的节点和链接变量。最后,对各种时间网络进行广泛的实验,从不同领域到拟议进行的详细分析,展示了拟议中的各种时间网络的影响。