In this work, we present an end-to-end Knowledge Graph Question Answering (KGQA) system named GETT-QA. GETT-QA uses T5, a popular text-to-text pre-trained language model. The model takes a question in natural language as input and produces a simpler form of the intended SPARQL query. In the simpler form, the model does not directly produce entity and relation IDs. Instead, it produces corresponding entity and relation labels. The labels are grounded to KG entity and relation IDs in a subsequent step. To further improve the results, we instruct the model to produce a truncated version of the KG embedding for each entity. The truncated KG embedding enables a finer search for disambiguation purposes. We find that T5 is able to learn the truncated KG embeddings without any change of loss function, improving KGQA performance. As a result, we report strong results for LC-QuAD 2.0 and SimpleQuestions-Wikidata datasets on end-to-end KGQA over Wikidata.


翻译:---- 在本文中,我们提出了一种名为GETT-QA的端到端知识图问答系统。GETT-QA使用T5,一种流行的文本到文本预训练语言模型。该模型以自然语言的形式接受问题作为输入,并生成简化形式的预期SPARQL查询。在简化形式中,该模型不直接生成实体和关系ID,而是生成相应的实体和关系标签。标签在随后的步骤中与KG实体和关系ID相结合。为了进一步改善结果,我们指导该模型生成每个实体的KG嵌入的截断版本。截断KG嵌入使细化搜索用于消歧。我们发现,T5能够在不改变损失函数的情况下学习截断的KG嵌入,从而提高了KGQA的性能。因此,我们在Wikidata的LC-QuAD 2.0和SimpleQuestions-Wikidata数据集上报告了端到端KGQA的强大结果。

0
下载
关闭预览

相关内容

【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
论文浅尝 | 可建模语义分层的知识图谱补全方法
开放知识图谱
30+阅读 · 2020年3月8日
【论文笔记】基于BERT的知识图谱补全
专知
116+阅读 · 2019年9月15日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关VIP内容
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
相关资讯
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
论文浅尝 | 可建模语义分层的知识图谱补全方法
开放知识图谱
30+阅读 · 2020年3月8日
【论文笔记】基于BERT的知识图谱补全
专知
116+阅读 · 2019年9月15日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员