The singleton defect of an $[n,k,d]$ linear code ${\cal C}$ is defined as $s({\cal C})=n-k+1-d$. Codes with $S({\cal C})=0$ are called maximum distance separable (MDS) codes, and codes with $S(\cal C)=S(\cal C ^{\bot})=1$ are called near maximum distance separable (NMDS) codes. Both MDS codes and NMDS codes have good representations in finite projective geometry. MDS codes over $F_q$ with length $n$ and $n$-arcs in PG$(k-1,q)$ are equivalent objects. When $k=3$, NMDS codes of length $n$ are equivalent to $(n,3)$-arcs in PG$(2,q)$. In this paper, we deal with the NMDS codes with dimension 3. By adding some suitable projective points in maximal arcs of PG$(2,q)$, we can obtain two classes of $(q+5,3)$-arcs (or equivalently $[q+5,3,q+2]$ NMDS codes) for any prime power $q$. We also determine the exact weight distribution and the locality of such NMDS codes and their duals. It turns out that the resultant NMDS codes and their duals are both distance-optimal and dimension-optimal locally recoverable codes.
翻译:$( c) 和$( c) 的单吨缺陷 $( c) 线性代码 $( c) = n- k+ 1 美元。 美元( c) = 0美元的代码被称为最大距离分解( MDS) 代码, 美元( c) = S( c) = S( c) = S( ca) = 1美元 美元 的代码被称为接近最大距离分解( NMDS) 代码的单吨缺陷。 MDS 代码和 NMDS 代码在有限的投影几度中都有很好的体现。 以美元长度( ) 和美元( 美元) 的MDS 代码高于美元, 美元( 美元) 和 美元( 美元) 等值( 美元) 。 当 美元( c) 美元, NMDS 的代码等于 PG$( n3 ), 美元( 3 ) 和 美元( 美元) 双数( 美元) 美元( 美元) 双数( RMMDS) ) 和双数( 美元) 等值( 美元) 等值( RMDS( ) ) ) 等值( RMFS( ) ) ) 等价( ) ) 。