The singleton defect of an $[n,k,d]$ linear code ${\cal C}$ is defined as $s({\cal C})=n-k+1-d$. Codes with $S({\cal C})=0$ are called maximum distance separable (MDS) codes, and codes with $S(\cal C)=S(\cal C ^{\bot})=1$ are called near maximum distance separable (NMDS) codes. Both MDS codes and NMDS codes have good representations in finite projective geometry. MDS codes over $F_q$ with length $n$ and $n$-arcs in PG$(k-1,q)$ are equivalent objects. When $k=3$, NMDS codes of length $n$ are equivalent to $(n,3)$-arcs in PG$(2,q)$. In this paper, we deal with the NMDS codes with dimension 3. By adding some suitable projective points in maximal arcs of PG$(2,q)$, we can obtain two classes of $(q+5,3)$-arcs (or equivalently $[q+5,3,q+2]$ NMDS codes) for any prime power $q$. We also determine the exact weight distribution and the locality of such NMDS codes and their duals. It turns out that the resultant NMDS codes and their duals are both distance-optimal and dimension-optimal locally recoverable codes.


翻译:$( c) 和$( c) 的单吨缺陷 $( c) 线性代码 $( c) = n- k+ 1 美元。 美元( c) = 0美元的代码被称为最大距离分解( MDS) 代码, 美元( c) = S( c) = S( c) = S( ca) = 1美元 美元 的代码被称为接近最大距离分解( NMDS) 代码的单吨缺陷。 MDS 代码和 NMDS 代码在有限的投影几度中都有很好的体现。 以美元长度( ) 和美元( 美元) 的MDS 代码高于美元, 美元( 美元) 和 美元( 美元) 等值( 美元) 。 当 美元( c) 美元, NMDS 的代码等于 PG$( n3 ), 美元( 3 ) 和 美元( 美元) 双数( 美元) 美元( 美元) 双数( RMMDS) ) 和双数( 美元) 等值( 美元) 等值( RMDS( ) ) ) 等值( RMFS( ) ) ) 等价( ) ) 。

0
下载
关闭预览

相关内容

Pacific Graphics是亚洲图形协会的旗舰会议。作为一个非常成功的会议系列,太平洋图形公司为太平洋沿岸以及世界各地的研究人员,开发人员,从业人员提供了一个高级论坛,以介绍和讨论计算机图形学及相关领域的新问题,解决方案和技术。太平洋图形会议的目的是召集来自各个领域的研究人员,以展示他们的最新成果,开展合作并为研究领域的发展做出贡献。会议将包括定期的论文讨论会,进行中的讨论会,教程以及由与计算机图形学和交互系统相关的所有领域的国际知名演讲者的演讲。 官网地址:http://dblp.uni-trier.de/db/conf/pg/index.html
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员