A supervised machine learning (ML) based computational methodology for the design of particulate multifunctional composite materials with desired thermal conductivity (TC) is presented. The design variables are physical descriptors of the material microstructure that directly link microstructure to the material's properties. A sufficiently large and uniformly sampled database was generated based on the Sobol sequence. Microstructures were realized using an efficient dense packing algorithm, and the TCs were obtained using our previously developed Fast Fourier Transform (FFT) homogenization method. Our optimized ML method is trained over the generated database and establishes the complex relationship between the structure and properties. Finally, the application of the trained ML model in the inverse design of a new class of composite materials, liquid metal (LM) elastomer, with desired TC is discussed. The results show that the surrogate model is accurate in predicting the microstructure behavior with respect to high-fidelity FFT simulations, and inverse design is robust in finding microstructure parameters according to case studies.


翻译:设计变量是将微结构与材料的特性直接联系起来的材料微结构的物理描述器。根据Sobol序列生成了一个足够大和统一的抽样数据库。微型结构是使用高效的密集包装算法实现的,并且利用我们以前开发的快速Fourier变异(FFT)同质化方法获得的。我们优化的ML方法经过了对生成数据库的培训,确定了结构与属性之间的复杂关系。最后,经过培训的ML模型在新型复合材料、液体金属(LM)弹性体和理想的TC的反向设计中应用。结果显示,在预测高纤维FFT模拟的微结构行为方面,套样模型是准确的,反面设计在根据案例研究找到微结构参数方面是有力的。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员