We consider optimal sensor placement for hyper-parameterized linear Bayesian inverse problems, where the hyper-parameter characterizes nonlinear flexibilities in the forward model, and is considered for a range of possible values. This model variability needs to be taken into account for the experimental design to guarantee that the Bayesian inverse solution is uniformly informative. In this work we link the numerical stability of the maximum a posterior point and A-optimal experimental design to an observability coefficient that directly describes the influence of the chosen sensors. We propose an algorithm that iteratively chooses the sensor locations to improve this coefficient and thereby decrease the eigenvalues of the posterior covariance matrix. This algorithm exploits the structure of the solution manifold in the hyper-parameter domain via a reduced basis surrogate solution for computational efficiency. We illustrate our results with a steady-state thermal conduction problem.
翻译:我们考虑对超参数线性贝叶斯反向问题采用最佳传感器定位,即超参数是前方模型的非线性灵活性的特点,并被考虑为一系列可能的值。在实验设计中,需要考虑到这一模型的变异性,以保证贝叶斯反向解决方案具有统一的信息。在这项工作中,我们将后端点和A-最佳实验设计的最大数值稳定性与直接描述所选传感器影响的可观测系数联系起来。我们提出了一种迭代选择传感器位置的算法,以改进这一系数,从而减少后方变异矩阵的灵精度值。这种算法利用超参数域中多元解决方案的结构,采用一个更低基基的代用法来计算效率。我们用稳定的热导问题来说明我们的结果。