We consider optimal sensor placement for hyper-parameterized linear Bayesian inverse problems, where the hyper-parameter characterizes nonlinear flexibilities in the forward model, and is considered for a range of possible values. This model variability needs to be taken into account for the experimental design to guarantee that the Bayesian inverse solution is uniformly informative. In this work we link the numerical stability of the maximum a posterior point and A-optimal experimental design to an observability coefficient that directly describes the influence of the chosen sensors. We propose an algorithm that iteratively chooses the sensor locations to improve this coefficient and thereby decrease the eigenvalues of the posterior covariance matrix. This algorithm exploits the structure of the solution manifold in the hyper-parameter domain via a reduced basis surrogate solution for computational efficiency. We illustrate our results with a steady-state thermal conduction problem.


翻译:我们考虑对超参数线性贝叶斯反向问题采用最佳传感器定位,即超参数是前方模型的非线性灵活性的特点,并被考虑为一系列可能的值。在实验设计中,需要考虑到这一模型的变异性,以保证贝叶斯反向解决方案具有统一的信息。在这项工作中,我们将后端点和A-最佳实验设计的最大数值稳定性与直接描述所选传感器影响的可观测系数联系起来。我们提出了一种迭代选择传感器位置的算法,以改进这一系数,从而减少后方变异矩阵的灵精度值。这种算法利用超参数域中多元解决方案的结构,采用一个更低基基的代用法来计算效率。我们用稳定的热导问题来说明我们的结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员