Segmentation of ultra-high resolution images with deep learning is challenging because of their enormous size, often millions or even billions of pixels. Typical solutions drastically downsample the image uniformly to meet memory constraints, implicitly assuming all pixels equally important by sampling at the same density at all spatial locations. However this assumption is not true and compromises the performance of deep learning techniques that have proved powerful on standard-sized images. For example with uniform downsampling, see green boxed region in Fig.1, the rider and bike do not have enough corresponding samples while the trees and buildings are oversampled, and lead to a negative effect on the segmentation prediction from the low-resolution downsampled image. In this work we show that learning the spatially varying downsampling strategy jointly with segmentation offers advantages in segmenting large images with limited computational budget. Fig.1 shows that our method adapts the sampling density over different locations so that more samples are collected from the small important regions and less from the others, which in turn leads to better segmentation accuracy. We show on two public and one local high-resolution datasets that our method consistently learns sampling locations preserving more information and boosting segmentation accuracy over baseline methods.


翻译:具有深层学习力的超高分辨率图像的分解具有挑战性,因为其体积巨大,往往有数百万甚至数十亿像素。典型的解决方案会大幅降低图像的分解,以一致满足内存限制,隐含地假设所有像素通过在所有空间地点的同一密度取样同等重要。然而,这一假设是不真实的,而且会损害在标准尺寸图像上证明强大的深层学习技术的性能。例如,通过统一的下游取样,见Fig.1中的绿箱区,骑手和自行车没有足够相应的样本,而树木和建筑物则过份采样,从而导致对低分辨率下采样图像的分解预测产生消极影响。在这项工作中,我们表明,学习空间差异不同的下层采样战略与分解相结合,有利于在计算预算有限的情况下对大图像进行分解。 Fig.1表明,我们的方法调整了不同地点的采样密度,以便从小的重要区域收集更多的样本,而从其他区域收集的样本则会提高分解准确性。我们展示了两种公共和一种高分辨率数据集,从而持续地提高基线的精确度。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Real-Time High-Resolution Background Matting
Arxiv
4+阅读 · 2020年12月14日
Arxiv
5+阅读 · 2020年10月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员